Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.175
Filtrar
1.
Biomolecules ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540737

RESUMO

Bone morphogenetic protein (BMP) and platelet-derived growth factor (PDGF) are known to regulate/stimulate osteogenesis, playing vital roles in bone homeostasis, rendering them strong candidates for osteoporosis treatment. We evaluated the effects of recombinant human BMP-7 (rhBMP7) and PDGF-BB (rhPDGF-BB) in an oophorectomy-induced osteoporosis rat model. Forty Sprague Dawley rats underwent oophorectomy surgery; treatments commenced on the 100th day post-surgery when all animals exhibited signs of osteoporosis. These peptide growth factors were administered intraocularly (iv) once or twice a week and the animals were monitored for a total of five weeks. Two weeks after the conclusion of the treatments, the animals were euthanized and tissues were collected for assessment of alkaline phosphatase, X-ray, micro-CT, and histology. The results indicate that the most promising treatments were 20 µg/kg rhPDGF-BB + 30 µg/kg rhBMP-7 twice a week and 30 µg/kg BMP-7 twice a week, showing significant increases of 15% (p < 0.05) and 13% (p < 0.05) in bone volume fraction and 21% (p < 0.05) and 23% (p < 0.05) in trabecular number, respectively. In conclusion, rhPDGF-BB and rhBMP-7 have demonstrated the ability to increase bone volume and density in this osteoporotic animal model, establishing them as potential candidates for osteoporosis treatment.


Assuntos
Proteína Morfogenética Óssea 7 , Osteoporose , Humanos , Ratos , Animais , Becaplermina/farmacologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/uso terapêutico , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Proteínas Morfogenéticas Ósseas , Osteoporose/tratamento farmacológico , Proteína Morfogenética Óssea 2
2.
Cell Biochem Funct ; 42(2): e3982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488412

RESUMO

Bone Morphogenetic Protein 2 (BMP2), a member of the Transforming Growth Factor-ß (TGF-ß) super family of proteins and is instrumental in the repair of fractures. The synthesis of BMP2 involves extensive post-translational processing and several studies have demonstrated the abysmally low production of rhBMP2 in eukaryotic systems, which may be due to the short half-life of the bioactive protein. Consequently, production costs of rhBMP2 are quite high, limiting its availability to the general populace. Therefore, there is an urgent need to identify better in-vitro systems for large scale production of rhBMP2. In the present study, we have carried out a comparative analysis of rhBMP2 production by the conventionally used Chinese Hamster ovarian cells (CHO) and goat mammary epithelial cells (GMEC), upon transfection with appropriate construct. Udder gland cells are highly secretory, and we reasoned that such cells may serve as a better in-vitro model for large scale production of rhBMP2. Our results indicated that the synthesis and secretion of bioactive rhBMP2 by goat mammary epithelial cells was significantly higher as compared to that by CHO-K1 cells. Our results provide strong evidence that GMECs may serve as a better alternative to other mammalian cells used for therapeutic protein production.


Assuntos
Proteína Morfogenética Óssea 2 , Cabras , Cricetinae , Animais , Humanos , Proteína Morfogenética Óssea 2/farmacologia , Cricetulus , Fator de Crescimento Transformador beta , Proteínas Recombinantes/farmacologia , Células Epiteliais
3.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339093

RESUMO

Lactoferrin (LF) stands as one of the extensively investigated iron-binding glycoproteins within milk, exhibiting diverse biological functionalities. The global demand for LF has experienced consistent growth. Biotechnological strategies aimed at enhancing LF productivity through microbial expression systems offer substantial cost-effective advantages and exhibit fewer constraints compared to traditional animal bioreactor technologies. This study devised a novel recombinant plasmid, wherein the AOX1 promoter was replaced with a glucose-inducible G1 promoter (PG1) to govern the expression of recombinant porcine LF (rpLF) in Pichia pastoris GS115. High-copy-number PG1-rpLF yeast clones were meticulously selected, and subsequent induction with 0.05 g/L glucose demonstrated robust secretion of rpLF. Scaling up production transpired in a 5 L fermenter, yielding an estimated rpLF productivity of approximately 2.8 g/L by the conclusion of glycerol-fed fermentation. A three-step purification process involving tangential-flow ultrafiltration yielded approximately 6.55 g of rpLF crude (approximately 85% purity). Notably, exceptional purity of rpLF was achieved through sequential heparin and size-exclusion column purification. Comparatively, the present glucose-inducible system outperformed our previous methanol-induced system, which yielded a level of 87 mg/L of extracellular rpLF secretion. Furthermore, yeast-produced rpLF demonstrated affinity for ferric ions (Fe3+) and exhibited growth inhibition against various pathogenic microbes (E. coli, S. aureus, and C. albicans) and human cancer cells (A549, MDA-MB-231, and Hep3B), similar to commercial bovine LF (bLF). Intriguingly, the hydrolysate of rpLF (rpLFH) manifested heightened antimicrobial and anticancer effects compared to its intact form. In conclusion, this study presents an efficient glucose-inducible yeast expression system for large-scale production and purification of active rpLF protein with the potential for veterinary or medical applications.


Assuntos
Anti-Infecciosos , Lactoferrina , Proteínas Recombinantes , Animais , Bovinos , Humanos , Anti-Infecciosos/farmacologia , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Lactoferrina/biossíntese , Lactoferrina/genética , Lactoferrina/farmacologia , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Saccharomycetales , Staphylococcus aureus/efeitos dos fármacos , Suínos
4.
Vaccine ; 42(7): 1549-1560, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38320931

RESUMO

Tumor subunit vaccines have great potential in personalized cancer immunotherapy. They are usually administered with adjuvant owing to their low immunogenicity. Cholera toxin (CT) is a biological adjuvant with diverse biological functions and a long history of use. Our earlier study revealed that a CT-like chimeric protein co-delivered with murine granulocyte-macrophage colony stimulating factor (mGM-CSF) and prostate cancer antigen epitope could co-stimulate dendritic cells (DCs) and enhance cross presentation of tumor epitope. To further study the molecular mechanism of CT-like chimeric protein in cross presentation, major histocompatibility complex class I (MHC I)-restricted epitope 257-264 of ovalbumin (OVAT) was used as a model antigen peptide in this study. Recombinant A subunit and pentameric B subunit of CT protein were respectively genetically constructed and purified. Then both assembled into AB5 chimeric protein in vitro. Three different chimeric biomacromolecules containing mGM-CSF and OVAT were constructed according to the different fusion sites and whether the endoplasmic reticulum (ER) retention sequence was included. It was found that A2 domain and B subunit of CT were both available for loading epitopes and retaining GM1 affinity. The binding activity of GM1 was positively correlated with antigen endocytosis. Once internalized, DCs became mature and cross-presented antigen. KDEL helped the whole molecule to be retained in the ER, and this improved the cross presentation of antigen on MHC I molecules. In conclusion, hexameric CT-like chimeric protein with dual effects of GM1 affinity and ER retention sequence were potential in improvement of cross presentation. The results laid a foundation for designing personalized tumor vaccine based on CT-like chimeric protein molecular structure.


Assuntos
Toxina da Cólera , Neoplasias , Camundongos , Animais , Humanos , Toxina da Cólera/metabolismo , Apresentação Cruzada , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M1)/farmacologia , Proteínas Recombinantes/farmacologia , Adjuvantes Imunológicos/farmacologia , Proteínas Recombinantes de Fusão/genética , Epitopos , Apresentação de Antígeno
5.
Biochem Biophys Res Commun ; 704: 149661, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38417343

RESUMO

To date only four recombinant growth factors, including Filgrastim (rhG-CSF), have been approved by FDA as radiomitigators to ameliorate hematopoietic acute radiation syndrome (H-ARS). These approved agents are not stable under room-temperature, needing to be stored at 2-8 °C, and would not be feasible in a mass casualty scenario where rapid and cost-effective intervention is crucial. Delta-tocotrienol (δ-T3H), the most potent G-CSF-inducing agent among vitamin E isoforms, exhibited efficiency and selectivity on G-CSF production in comparison with TLR and STING agonists in mice. Five-dose δ-T3H was utilized as the optimal therapeutic regimen due to long-term G-CSF production and the best peripheral blood (PB) recovery of irradiated mice. Comparable with rhG-CSF, sequential administration of δ-T3H post-irradiation improved hematologic recovery and accelerated the regeneration of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in the bone marrow (BM) and spleen of 6.5Gy irradiated mice; and consistently enhanced repopulation of BM-HSCs. In 4.0Gy irradiated nonhuman primates, δ-T3H exhibited comparable efficacy as rhG-CSF to promote PB recovery and colony-formation of BM-HPCs. Altogether, we demonstrated that sequential administration of delta-tocotrienol ameliorates radiation-induced myelosuppression in mice and non-human primates through inducing G-CSF production, indicated δ-T3H as a promising radiomitigator for the management of H-ARS, particularly in a mass casualty scenario.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Vitamina E , Animais , Camundongos , Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Fator Estimulador de Colônias de Granulócitos/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/metabolismo , Primatas , Proteínas Recombinantes/farmacologia , Vitamina E/análogos & derivados , Vitamina E/uso terapêutico
6.
Anticancer Res ; 44(3): 921-928, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423656

RESUMO

BACKGROUND/AIM: The aim of the present study was to determine the synergy of recombinant methioninase (rMETase) and the anti-tubulin agent eribulin on fibrosarcoma cells, in comparison to normal fibroblasts, in vitro. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells and HS27 human fibroblasts were used for in vitro experiments. Four groups were analyzed in vitro: No-treatment control; eribulin; rMETase; eribulin plus rMETase. Dual-color HT1080 cells which express red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nuclei were used to visualize cytoplasmic and nuclear dynamics during treatment. RESULTS: Eribulin combined with rMETase greatly decreased the viability of HT 1080 cells. In contrast, eribulin combined with rMETase did not show synergy on Hs27 normal fibroblasts. Eribulin combined with rMETase also caused more fragmentation of the nucleus than all other treatments. CONCLUSION: The combination treatment of eribulin plus rMETase demonstrated efficacy on fibrosarcoma cells in vitro. In contrast, normal fibroblasts were resistant to this combination, indicating the potential clinical applicability of the treatment.


Assuntos
Liases de Carbono-Enxofre , Fibrossarcoma , Furanos , Cetonas , 60436 , Humanos , Liases de Carbono-Enxofre/uso terapêutico , Linhagem Celular Tumoral , Fibrossarcoma/tratamento farmacológico , Fibroblastos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
7.
Cell Commun Signal ; 22(1): 81, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291404

RESUMO

BACKGROUND: Previous research has revealed that the 18 glycoside hydrolase gene family (GH18) member Chitinase 3-like 1 (Chi3l1) can regulate osteoclast differentiation and bone resorption. However, its downstream receptors and molecular mechanisms during osteoclastogenesis have yet to be elucidated. METHODS: Initially, we conducted a comprehensive investigation to evaluate the effects of recombinant Chi3l1 protein or Chi3l1 siRNA on osteoclast differentiation and the RANKL-induced MAPK/AKT signaling pathways. Moreover, we used immunofluorescence and immunoprecipitation assays to identify IL13Rα2 as the downstream receptor of Chi3l1. Subsequently, we investigated the impact of IL13Rα2 recombinant protein or IL13Rα2-siRNA on osteoclast differentiation and the associated signaling pathways. Finally, we performed in vivo experiments to examine the effect of recombinant IL13Rα2 protein in an LPS-induced mouse model of cranial osteolysis. RESULTS: Our findings highlight that the administration of recombinant Chi3l1 protein increased the formation of osteoclasts and bolstered the expression of several osteoclast-specific genes (TRAP, NFATC1, CTR, CTSK, V-ATPase d2, and Dc-STAMP). Additionally, Chi3l1 significantly promoted the RANKL-induced MAPK (ERK/P38/JNK) and AKT pathway activation, whereas Chi3l1 silencing inhibited this process. Next, using immunofluorescence and co-immunoprecipitation assays, we identified IL13Rα2 as the binding partner of Chi3l1 during osteoclastogenesis. IL13Rα2 recombinant protein or IL13Rα2-siRNA also inhibited osteoclast differentiation, and IL13Rα2-siRNA attenuated the RANKL-induced activation of the MAPK (ERK/P38/JNK) and AKT pathways, similar to the effects observed upon silencing of Chi3l1. Moreover, the promoting effect of recombinant Chi3l1 protein on osteoclastogenesis and the activation of the MAPK and AKT pathways was reversed by IL13Rα2 siRNA. Finally, recombinant LI13Rα2 protein significantly attenuated the LPS-induced cranial osteolysis and the number of osteoclasts in vivo. CONCLUSIONS: Our findings suggested that IL13Rα2 served as a crucial receptor for Chi3l1, enhancing RANKL-induced MAPK and AKT activation to promote osteoclast differentiation. These findings provide valuable insights into the molecular mechanisms of Chi3l1 in osteoclastogenesis, with potential therapeutic implications for osteoclast-related diseases. Video Abstract.


Assuntos
Reabsorção Óssea , Subunidade alfa2 de Receptor de Interleucina-13 , Osteólise , Animais , Camundongos , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Proteína 1 Semelhante à Quitinase-3/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Subunidade alfa2 de Receptor de Interleucina-13/uso terapêutico , Lipopolissacarídeos/farmacologia , Fatores de Transcrição NFATC/metabolismo , Osteoclastos , Osteólise/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Proteínas Recombinantes/farmacologia , RNA Interferente Pequeno/metabolismo
8.
Appl Microbiol Biotechnol ; 108(1): 111, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229298

RESUMO

The low activity and yield of antimicrobial peptides (AMPs) are pressing problems. The improvement of activity and yield through modification and heterologous expression, a potential way to solve the problem, is a research hot-pot. In this work, a new plectasin-derived variant L-type AP138 (AP138L-arg26) was constructed for the study of recombination expression and druggablity. As a result, the total protein concentration of AP138L-arg26 was 3.1 mg/mL in Pichia pastoris X-33 supernatant after 5 days of induction expression in a 5-L fermenter. The recombinant peptide AP138L-arg26 has potential antibacterial activity against selected standard and clinical Gram-positive bacteria (G+, minimum inhibitory concentration (MIC) 2-16 µg/mL) and high stability under different conditions (temperature, pH, ion concentration) and 2 × MIC of AP138L-arg26 could rapidly kill Staphylococcus aureus (S. aureus) (> 99.99%) within 1.5 h. It showed a high safety in vivo and in vivo and a long post-antibiotic effect (PAE, 1.91 h) compared with vancomycin (1.2 h). Furthermore, the bactericidal mechanism was revealed from two dimensions related to its disruption of the cell membrane resulting in intracellular potassium leakage (2.5-fold higher than control), and an increase in intracellular adenosine triphosphate (ATP), and reactive oxygen species (ROS), the decrease of lactate dehydrogenase (LDH) and further intervening metabolism in S. aureus. These results indicate that AP138L-arg26 as a new peptide candidate could be used for more in-depth development in the future. KEY POINTS: • The AP138L-arg26 was expressed in the P. pastoris expression system with high yield • The AP138 L-arg26 showed high stability and safety in vitro and in vivo • The AP138L-arg26 killed S. aureus by affecting cell membranes and metabolism.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus , Peptídeos Antimicrobianos , Pichia/genética , Pichia/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Staphylococcus aureus Resistente à Meticilina/genética
9.
J Biotechnol ; 381: 49-56, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38181983

RESUMO

Plant-derived peptides represent a promising group of natural compounds with broad industrial and pharmaceutical applications. Low-efficiency production level is the major obstacle to the commercial production of such bioactive peptides. Today, recombinant techniques have been developed for fast and cost-effective production of high-quality peptides for various applications in the chemical and food industries. The roseltide rT1 is a plant peptide with different antimicrobial properties and therapeutic applications in the prevention and treatment of inflammatory lung diseases by inhibiting human neutrophil elastases. Here, we report the expression of functional recombinant roseltide rT1 peptide in tobacco plants. Transgenic plants were generated by the Agrobacterium-mediated transformation method followed by molecular analysis of transgenic plants to demonstrate successful integration and expression of recombinant rT1 peptide. Protein extracts of transgenic plants expressing a single-copy rT1 gene showed efficient antimicrobial properties as verified by growth inhibition of different bacterial strains. Our results illustrate that plant-derived recombinant rT1 peptide is a promising alternative for rapid and cost-effective production of this important antimicrobial peptide for application in therapeutic and food industries.


Assuntos
Anti-Infecciosos , Tabaco , Humanos , Tabaco/genética , Peptídeos Antimicrobianos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Peptídeos/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
10.
J Biotechnol ; 381: 19-26, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38181981

RESUMO

The antimicrobial peptide (AMP) LI is a fusion product of antimicrobial peptide LL37 produced by human neutrophils and Indolicidin secreted by bovine neutrophils. LI retained the antimicrobial activity of the parental peptides and showed high cell selectivity. In this study, the flexible linker Gly-Ser-Gly (G-S-G) was used to ligate LI into dimeric LIG, and constructed the Pichia pastoris (P. pastoris) expression vector pPIC9K-6×His-3×FLAG-LIG. The total protein expression of P. pastoris GS115 reached the highest level (189.6 mg/L) after 96 h induction with 3 % methanol at the initial pH value of 7.0. Finally, 5.9 mg/L of recombinant LIG (rLIG) was obtained after enterokinase digestion and purification. The rLIG had high antimicrobial activity and low hemolytic activity. Compared with monomer LI, GSG linked dimeric LIG, which had no significant change in antimicrobial activity and had good salt ions stability. In this study, the dimeric antimicrobial peptide LIG was successfully expressed, which provided a new idea for the expression of AMPs in the P. pastoris expression system, and had important significance for the application of AMPs.


Assuntos
Anti-Infecciosos , Saccharomycetales , Animais , Bovinos , Humanos , Peptídeos Antimicrobianos , Pichia/metabolismo , Anti-Infecciosos/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
11.
Tissue Eng Part C Methods ; 30(3): 102-112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271574

RESUMO

The aim of this study was to assess the bone regeneration potential of a polydioxanone (PDO) scaffold together with recombinant human bone morphogenetic protein-2 (rhBMP-2) for the reconstruction of large bone defect. In total, 24 male rats (6 months old) were subjected to bilateral femoral stabilization using titanium plates to create a 2 mm gap, and reconstruction using rhBMP-2 (Infuse®; 3.25 µg). The bone defects were covered with PDO (PDO group), or with titanium mesh (Ti group). Animals were euthanized on days 14 and 60. Simultaneously, 16 rats received PDO and Ti in their dorsum for the purpose of biocompatibility analysis at 3, 5, 7, and 10 days postoperatively. X-ray densitometry showed a higher density in the PDO group on day 14. On day 60, coverage of the bone defect with PDO showed a larger quantity of newly formed bone than that found for the Ti group, a lower inflammatory infiltrate value, and a more significant number of blood vessels on day 14. By immunohistochemical assessment, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) showed higher labeling on day 14 in the PDO group. On day 60, bone morphogenetic protein-2 (BMP-2) showed higher labeling in the PDO group, whereas Ti showed higher labeling for osteoprotegerin, nuclear factor kappa B ligand-activating receptor, RUNX2, and OCN. Furthermore, biocompatibility analysis showed a higher inflammatory response in the Ti group. The PDO scaffold enhanced bone regeneration when associated with rhBMP-2 in rat femur reconstruction. Impact statement Regeneration of segmental bone defects is a difficult task, and several techniques and materials have been used. Recent advances in the production of synthetic polymers, such as polydioxanone (PDO), produced by three-dimensional printing, have shown distinct characteristics that could improve tissue regeneration even in an important bone defect. The present preclinical study showed that PDO membranes used as scaffolds to carry recombinant human bone morphogenetic protein-2 (rhBMP-2) improved bone tissue regeneration by more than 8-fold when compared with titanium mesh, suggesting that PDO membranes could be a feasible and useful material for use in guided bone regeneration. (In English, viable is only used for living creatures capable of sustaining life.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Polidioxanona , Masculino , Ratos , Humanos , Animais , Lactente , Polidioxanona/farmacologia , Titânio , Proteína Morfogenética Óssea 2/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Regeneração Óssea , Proteínas Recombinantes/farmacologia , Fêmur/diagnóstico por imagem
12.
Horm Res Paediatr ; 97(1): 1-10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37075730

RESUMO

INTRODUCTION: Recombinant human growth hormone (rhGH) therapy effectively increases height in various disorders of childhood growth. However, whether rhGH affects pubertal timing is unclear. We aimed to review systematically published evidence on the effect of rhGH on pubertal timing. METHODS: Embase, MEDLINE, and Cochrane Library databases were searched until December 2021 on randomized and non-randomized controlled studies of rhGH in children. RESULTS: Twenty-five articles (n = 1,433 children) were identified, describing 12 randomized and 13 non-randomized controlled studies in children with idiopathic short stature (ISS; 15 studies), small for gestational age (n = 6 studies), chronic renal failure (n = 3), Noonan syndrome (n = 1), and growth hormone deficiency (n = 1). Significant differences in the effects of rhGH on pubertal timing were found by clinical indication. Only among children with ISS, rhGH promoted earlier age at pubertal timing (mean difference = -0.46 years; 95% CI, -0.90 to -0.03; 9 studies; n total = 397) or higher relative risk for pubertal onset during study follow-up (1.26; 95% CI, 1.03 to 1.54; 6 studies; n total = 284). CONCLUSIONS: Treatment with rhGH appears to promote earlier pubertal timing among children with ISS. Evidence was lacking in children with growth hormone deficiency due to the absence of studies with untreated controls.


Assuntos
Nanismo Hipofisário , Hormônio do Crescimento Humano , Criança , Humanos , Hormônio do Crescimento Humano/uso terapêutico , Hormônio do Crescimento Humano/farmacologia , Hormônio do Crescimento/uso terapêutico , Estatura , Transtornos do Crescimento/tratamento farmacológico , Nanismo Hipofisário/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/farmacologia
13.
Biotechnol J ; 19(1): e2300261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844203

RESUMO

Polymer surfactants are key components of cell culture media as they prevent mechanical damage during fermentation in stirred bioreactors. Among cell-protecting surfactants, Pluronics are widely utilized in biomanufacturing to ensure high cell viability and productivity. Monodispersity of monomer sequence and length is critical for the effectiveness of Pluronics-since minor deviations can damage the cells-but is challenging to achieve due to the stochastic nature of polymerization. Responding to this challenge, this study introduces Peptonics, a novel family of peptide and peptoid surfactants whose monomer composition and sequence are designed to achieve high cell viability and productivity at a fraction of chain length and cost of Pluronics. A designed ensemble of Peptonics was initially characterized via light scattering and tensiometry to select sequences whose phase behavior and tensioactivity align with those of Pluronics. Selected sequences were evaluated as cell-protecting surfactants using Chinese hamster ovary (CHO) cells expressing therapeutic monoclonal antibodies (mAb). Peptonics IH-T1010, ih-T1010, and ih-T1020 afforded high cell density (up to 3 × 107 cells mL-1 ) and viability (up to 95% within 10 days of culture), while reducing the accumulation of ammonia (a toxic metabolite) by ≈10% compared to Pluronic F-68. Improved cell viability afforded high mAb titer (up to 5.5 mg mL-1 ) and extended the production window beyond 14 days; notably, Peptonic IH-T1020 decreased mAb fragmentation and aggregation ≈5%, and lowered the titer of host cell proteins by 16% compared to Pluronic F-68. These features can improve significantly the purification of mAbs, thus increasing their availability at a lower cost to patients.


Assuntos
Poloxâmero , Tensoativos , Cricetinae , Animais , Humanos , Cricetulus , Tensoativos/farmacologia , Células CHO , Anticorpos Monoclonais/química , Técnicas de Cultura de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
14.
Int J Biol Macromol ; 255: 128192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979760

RESUMO

IL-1ß is an important proinflammatory cytokine with multifaceted modulatory roles in immune responses. In fish, recombinant IL-1ß has been employed in the control of bacterial diseases, while the antiviral mechanisms of IL-1ß remain largely unknown, and the efficacy of recombinant IL-1ß as an immunomodulator to prevent viral diseases is still not determined. This study evaluated the immunomodulatory effects of recombinant grass carp IL-1ß against grass carp reovirus (GCRV) in vitro and in vivo. Firstly, the mature form (Ser111-Lys270) of grass carp IL-1ß was identified, and its recombinant protein (designated as rgcIL-1ß) was prepared through prokaryotic expression. Then, an in vitro evaluation model for rgcIL-1ß activity was established in the CIK cells, with the appropriate concentration (600 ng/mL) and effect time (1 h). In vitro, rgcIL-1ß could not only induce the production of proinflammatory cytokines such as IL-1ß, IL-6, IL-8, and TNF-α but also a series of antiviral factors including IFN-1, IFN-2, IFN-γ, and ISG15. Mechanistically, transcriptome analysis and western blotting confirmed that rgcIL-1ß activated multiple transcriptional factors, including NF-κB, IRF1, IRF3, and IRF8, and the signal pathways associated with inflammatory cytokines and antiviral factors expression. Expectedly, rgcIL-1ß treatment significantly inhibited GCRV replication in vitro. In vivo administration of rgcIL-1ß via intraperitoneal pre-injection significantly aroused an antiviral response to restrict GCRV replication and intense tissue inflammation in grass carp, demonstrating the immunomodulatory effects of rgcIL-1ß. More importantly, rgcIL-1ß administrated with 10 ng/g and 1 ng/g could improve the survival rate of grass carp during GCRV infection. This study represents the first time to comprehensively reveal the immunomodulatory and antiviral mechanisms of IL-1ß in fish and may also pave the way for further developing recombinant IL-1ß as an immunotherapy for the prevention and control of fish viral diseases.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Proteínas Recombinantes/farmacologia , Citocinas/genética , Infecções por Reoviridae/tratamento farmacológico , Infecções por Reoviridae/veterinária , Adjuvantes Imunológicos , Peixes , Fatores Imunológicos/farmacologia , Antivirais/farmacologia , Carpas/genética , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle
15.
Br J Anaesth ; 132(2): 251-259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030550

RESUMO

BACKGROUND: The comparative effectiveness of the specific antidote andexanet alfa vs the nonspecific therapy four-factor prothrombin complex concentrates (4F-PCCs) as reversal agents for direct factor Xa (FXa) inhibitors in severely bleeding patients is unclear. We hypothesised that specific reversal using andexanet alfa would be more effective than a high dose of PCC (50 IU kg-1) for reversing the FXa inhibitor rivaroxaban. METHODS: The reversal potential of andexanet alfa, various 4F-PCCs, and activated PCC was investigated ex vivo in human blood anticoagulated with rivaroxaban (37.5, 75, 150, and 300 ng ml-1) using a panel of coagulation parameters, including conventional coagulation assays, thrombin generation, and a newly developed viscoelastometric device. We simulated in vivo conditions of coagulation activation and fibrin formation using flow chamber experiments of thrombogenicity potential under arterial flow conditions. RESULTS: The 4F-PCCs normalised clotting profiles only at low rivaroxaban concentrations, whereas andexanet alfa and activated PCC significantly shortened clotting time at all rivaroxaban concentrations. Only andexanet alfa restored thrombin generation to baseline. Flow chamber results showed that various 4F-PCCs concentration-dependently restored clot formation. CONCLUSIONS: In contrast to thrombin generation measurements, haemostatic reversal of rivaroxaban using high-dose 4F-PCCs exhibited similar efficacy as andexanet alfa in flow chamber experiments. The haemostatic effects of 4F-PCCs and andexanet alfa in the context of bleeding patients taking FXa inhibitors requires further study.


Assuntos
Hemostáticos , Rivaroxabana , Humanos , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Fatores de Coagulação Sanguínea/farmacologia , Fatores de Coagulação Sanguínea/uso terapêutico , Fator IX , Fator Xa/farmacologia , Fator Xa/uso terapêutico , Inibidores do Fator Xa/farmacologia , Hemorragia/tratamento farmacológico , Hemostáticos/uso terapêutico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Rivaroxabana/farmacologia , Trombina
16.
Int Immunopharmacol ; 126: 111204, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38016343

RESUMO

Glycolysis is a key pathway in cellular glucose metabolism for energy supply and regulates immune cell activation. Whether glycolysis is involved in the activation of NOD-like receptor family protein 3 (NLRP3) inflammasomes during Treponema pallidum (T. pallidum) infection is unclear. In this study, the effect of T. pallidum membrane protein Tp47 on NLRP3 inflammasome activation in rabbit peritoneal macrophages was analysed and the role of glycolysis in NLRP3 inflammasome activation was explored. The results showed that Tp47 promoted NLRP3, caspase-1, and IL-1ß mRNA expression in macrophages, enhanced glycolysis and glycolytic capacity of macrophage, and promoted the production of macrophage glycolytic metabolites citrate, phosphoenolpyruvate, and lactate. The M2 pyruvate kinase (PKM2) inhibitor shikonin down-regulated the Tp47-promoted NLRP3, caspase-1, and IL-1ß mRNA expression in macrophages, and suppressed the Tp47-enhanced glycolysis and glycolytic capacity. Similarly, si-PKM2 significantly inhibited Tp47-promoted NLRP3, caspase-1, and IL-1ß mRNA expression and the Tp47-enhanced glycolysis and glycolytic capacity in macrophages. In conclusion, Tp47 activated NLRP3 inflammasomes via PKM2-dependent glycolysis and provided a new perspective on the effect of T. pallidum infection on host macrophages, which would contribute to the understanding of the infection mechanism and host immune mechanism of T. pallidum.


Assuntos
Inflamassomos , Treponema pallidum , Animais , Coelhos , Inflamassomos/metabolismo , Treponema pallidum/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Macrófagos , Proteínas Recombinantes/farmacologia , Caspase 1/metabolismo , RNA Mensageiro/metabolismo , Glicólise , Interleucina-1beta/metabolismo
17.
J Biol Chem ; 300(1): 105452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949218

RESUMO

Hepcidin, a peptide hormone that negatively regulates iron metabolism, is expressed by bone morphogenetic protein (BMP) signaling. Erythroferrone (ERFE) is an extracellular protein that binds and inhibits BMP ligands, thus positively regulating iron import by indirectly suppressing hepcidin. This allows for rapid erythrocyte regeneration after blood loss. ERFE belongs to the C1Q/TNF-related protein family and is suggested to adopt multiple oligomeric forms: a trimer, a hexamer, and a high molecular weight species. The molecular basis for how ERFE binds BMP ligands and how the different oligomeric states impact BMP inhibition are poorly understood. In this study, we demonstrated that ERFE activity is dependent on the presence of stable dimeric or trimeric ERFE and that larger species are dispensable for BMP inhibition. Additionally, we used an in silico approach to identify a helix, termed the ligand-binding domain, that was predicted to bind BMPs and occlude the type I receptor pocket. We provide evidence that the ligand-binding domain is crucial for activity through luciferase assays and surface plasmon resonance analysis. Our findings provide new insight into how ERFE oligomerization impacts BMP inhibition, while identifying critical molecular features of ERFE essential for binding BMP ligands.


Assuntos
Proteínas Morfogenéticas Ósseas , Hormônios Peptídicos , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Ligantes , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Hormônios Peptídicos/genética , Hormônios Peptídicos/isolamento & purificação , Hormônios Peptídicos/farmacologia , Multimerização Proteica/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Domínios Proteicos , Humanos
18.
Protein Expr Purif ; 215: 106405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979629

RESUMO

α-Conotoxin ImI is a selective antagonist of alpha7 nicotinic acetylcholine receptor (α7 nAChR) that is involved in cancer development. Human alpha fetoprotein domain 3 (AFP3) is a prototype of anticancer agents. In an effort to design drugs for anticancer treatments, we fused the ImI peptide to AFP3 as a fusion protein for testing. The fusion protein (ImI-AFP3) was highly expressed in the insect Bac-to-Bac system. The purified fusion protein was found to have improved anticancer activity and synergized with the drug gefitinib to inhibit the growth and migration of A549 and NCI-H1299 lung cancer cells. Our data have demonstrated that the recombinant protein ImI-AFP3 is a promising candidate for drug development to suppress lung cancer cell growth, especially to suppress hepatoid adenocarcinoma of the lung (HAL) cell growth.


Assuntos
Conotoxinas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Conotoxinas/química , Conotoxinas/metabolismo , Conotoxinas/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Pulmão
19.
Appl Biochem Biotechnol ; 196(2): 804-820, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37209276

RESUMO

Granulocyte colony-stimulating factor (GCSF) stimulates the proliferation of neutrophils but it has low serum half-life. Therefore, the present study was done to investigate the effect of XTENylation on biological activity, pharmacokinetics, and pharmacodynamics of GCSF in a neutropenic rat model. XTEN tag was genetically fused to the N-terminal region of GCSF-encoding gene fragment and subcloned into pET28a expression vector. The cytoplasmic expressed recombinant protein was characterized through intrinsic fluorescence spectroscopy (IFS), dynamic light scattering (DLS), and size exclusion chromatography (SEC). In vitro biological activity of the XTEN-GCSF protein was evaluated on NFS60 cell line. Hematopoietic properties and pharmacokinetics were also investigated in a neutropenic rat model. An approximately 140 kDa recombinant protein was detected on SDS-PAGE. Dynamic light scattering and size exclusion chromatography confirmed the increase in hydrodynamic diameter of GCSF molecule after XTENylation. GCSF derivatives showed efficacy in proliferation of NFS60 cell line among which the XTEN-GCSF represented the lowest EC50 value (100.6 pg/ml). Pharmacokinetic studies on neutropenic rats revealed that XTEN polymer could significantly increase protein serum half-life in comparison with the commercially available GCSF molecules. PEGylated and XTENylated GCSF proteins were more effective in stimulation of neutrophils compared to the GCSF molecule alone. XTENylation of GCSF represented promising results in in vitro and in vivo studies. This approach can be a potential alternative to PEGylation strategies for increasing serum half-life of protein.


Assuntos
Fator Estimulador de Colônias de Granulócitos , Polímeros , Animais , Ratos , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/isolamento & purificação , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Neutrófilos , Polímeros/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
20.
Br J Anaesth ; 132(2): 215-217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071150

RESUMO

This study in vitro comprehensively assessed reversal of the anticoagulant effects of rivaroxaban, an oral factor Xa inhibitor, using andexanet alfa and various prothrombin complex concentrate (PCC) products in a battery of tests. In static coagulation assays, andexanet alpha outperformed PCCs except for activated PCC being more effective in standard coagulation times. However, in a flow chamber model mimicking arterial shear, both andexanet alpha and high-concentration PCC restored fibrin formation, but not platelet adhesion. In the Russell's viper venom test and anti-Xa assay, only andexanet alpha could be tested for efficacy. The antidote effects of andexanet alpha and PCCs in restoring coagulation can be qualitatively or selectively demonstrated using in vitro coagulation tests.


Assuntos
Antídotos , Inibidores do Fator Xa , Fator Xa , Humanos , Inibidores do Fator Xa/farmacologia , Antídotos/farmacologia , Antídotos/uso terapêutico , Fatores de Coagulação Sanguínea/farmacologia , Fatores de Coagulação Sanguínea/uso terapêutico , Rivaroxabana/farmacologia , Fator IX , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Anticoagulantes/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...